Exploring the Potential of Machine Learning for Automatic Slum Identification from VHR Imagery

نویسندگان

  • Juan Carlos Duque
  • Jorge E. Patino
  • Alejandro Betancourt
چکیده

Slum identification in urban settlements is a crucial step in the process of formulation of pro-poor policies. However, the use of conventional methods for slum detection such as field surveys can be time-consuming and costly. This paper explores the possibility of implementing a low-cost standardized method for slum detection. We use spectral, texture and structural features extracted from very high spatial resolution imagery as input data and evaluate the capability of three machine learning algorithms (Logistic Regression, Support Vector Machine and Random Forest) to classify urban areas as slum or no-slum. Using data from Buenos Aires (Argentina), Medellin (Colombia) and Recife (Brazil), we found that Support Vector Machine with radial basis kernel delivers the best performance (with F2-scores over 0.81). We also found that singularities within cities preclude the use of a unified classification model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data

Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Transferability of Object-Oriented Image Analysis Methods for Slum Identification

Updated spatial information on the dynamics of slums can be helpful to measure and evaluate progress of policies. Earlier studies have shown that semi-automatic detection of slums using remote sensing can be challenging considering the large variability in definition and appearance. In this study, we explored the potential of an object-oriented image analysis (OOA) method to detect slums, using...

متن کامل

Object-oriented Analysis of Very High Resolution Orthophotos for Estimating the Population of Slum Areas, Case of Dar-es-salaam, Tanzania

Obtaining up-to-date spatial information about slum settlements is of great importance for decision making related to slum and housing policy. The availability of Very High Resolution (VHR) satellite imagery in meter or sub-meter level is helpful and promising in the information extraction of slum areas based on object-oriented techniques. This paper aims to determine the feasibility of using V...

متن کامل

Slums from Space - 15 Years of Slum Mapping Using Remote Sensing

The body of scientific literature on slum mapping employing remote sensing methods has increased since the availability of more very-high-resolution (VHR) sensors. This improves the ability to produce information for pro-poor policy development and to build methods capable of supporting systematic global slum monitoring required for international policy development such as the Sustainable Devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017